SLIC Superpixels for Efficient Graph-Based Dimensionality Reduction of Hyperspectral Imagery
نویسندگان
چکیده
Nonlinear graph-based dimensionality reduction algorithms such as Laplacian Eigenmaps (LE) and Schroedinger Eigenmaps (SE) have been shown to be very effective at yielding low-dimensional representations of hyperspectral image data. However, the steps of graph construction and eigenvector computation required by LE and SE can be prohibitively costly as the number of image pixels grows. In this paper, we propose pre-clustering the hyperspectral image into Simple Linear Iterative Clustering (SLIC) superpixels and then performing LEor SE-based dimensionality reduction with the superpixels as input. We then investigate how different superpixel size and regularity choices yield trade-offs between improvements in computational efficiency and accuracy of subsequent classification using the low-dimensional representations.
منابع مشابه
Segmentation Improvement of High Resolution Remote Sensing Images based on superpixels using Edge-based SLIC algorithm (E-SLIC)
The segmentation of high resolution remote sensing images is one of the most important analyses that play a significant role in the maximal and exact extraction of information. There are different types of segmentation methods among which using superpixels is one of the most important ones. Several methods have been proposed for extracting superpixels. Among the most successful ones, we can r...
متن کاملSaliency Detection in Aerial Imagery Using Multi-Scale SLIC Segmentation
Object detection in a huge volume of aerial imagery requires first detecting the salient regions. When an image is over-segmented by the superpixels, the latters will adhere to object boundaries, resulting in their shape deformation and size variation, which can be used as the saliency measure. The normalized Hausdorff distances from the inner pixels to boundary of the superpixels are then tran...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملUnmixingwith Slic Superpixels for Hyperspectral Change Detection A
Change detection by unmixing has been shown to provide enhanced change detection performance for hyperspectral images with respect to more traditional approaches, especially when the temporal images contain sub-pixel level changes. In a recent paper, change detection by spectral unmixing was investigated in detail and the advantages that can be gained by using such an approach were systematical...
متن کاملImpact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...
متن کامل